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Solving equations (3) and (4) for F(s) end 6&(s) gives the Laplace
transform of y(x) and 6(x), respectively, as :

(3 + o0)tp + (s + 275 + poy - po o' (3 - 0) - '3y + 0) ]

y(s) =

a(s)
&2 + 5)9"57'1[&1!!(21 - O) - Y'”(Zl + O)___[
] (5)
a(s)
and
(s) = s)"'91 - y8¥p = 7¥3 = H1a + ye sZ]_[ynx(z - O) - ytn<2 + O):I
a(s)
(e - ) (3 - 0) - 63, + o] ©
a(s)
where
Y 2

a(s) = 8 + 88 - a8 + 7B - B

Golend and Iuke (reference 4) showed that y(x) and 6(x) could be
written as a converging series by expending the transforms (5) and (6)
in terms of symmetric polynomisals of the squares of the roots of a(s)
and applying the inverse transform. A discussion of this expansion is
given in section 4 of appendix A where it is shown that 1/q(s) can be
written as

[--)
%) & ()
s) on
d 8 n=OS
where
To—l
Tl='8
T, =8 4 a
T = -83 - b =By
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For n 2 3,
T, = BTy + alpp + (B - BY)Tn-3 (8)
When the series e ion of 1/q(s), equation (7), is substituted
into equations (5) and (6) the transforms i%s) and ©6(8) become sums of-

infinite series with terms of two distinct types; that is, terms of types

%>

Be X0
o

vhere m 1s a positive integer.

The inverse Iaplace transform of :’E (see pair no. 3, p. 295, of

reference 9) for x>0 1s

Al - Al (9)
i} Zm - 15 I
Bo~ %o
and the inverse Laplace transform of LE—- (see pair no. 63 s Do 298,
‘ &

of reference 9) for X >Xo >0 1is

1 1Be™®%|  B(x - xo)™t
Llism}= @ - 1) (10)
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SUMMARY

.

A method 1s presented for the calculation of the flutter speed of a
uniform wing carrying an arbitrarlily placed concentrated mass. The
method, an extension of recently published work by Goland and Luke,
involves the solution of .the differential eguations of motion of the
wing at flutter s=peed and therefore doss not require the assumption of
specific normal modes of vibratiop. The order of the flutter determi-
nant to be solved by this method depends upcn the order of the system
of differential equations and not upon the number of modes of vibration
Involved.

The differential equations are solved by operational msthods and
a brief discussion of operational methods as applied to boundary-value
problems is included in one of two appendixes. A comparison is made
with experiment for a wing wilth & large eccentricelly mounted welght
and good agreement is obtained. Semple calculations are presented to
illustrate the method; and curves of amplitudes of displacement, torque,
and shear for a particular case are compared with corresponding curves
computed from the flrst uncoupled normal modes.

For convenience, the method employs two-dimensional ailr forces
and could be extended to apply to uniform wings with any number of
arbitrarily placed concentrated weights, one of which might be considered
ag a fuselage. The locatlon of such masses as englnes, fusl tanks, and
landing-gear installations might be used to advantage In increasing the
flutter speed of a given wing.

INTROTUCTION

The common procedures in flutter analysis of an alrplane wing
involve many simplifying assuwnptions. In particulsr the degrees of
freedom of the wing are usually determined by choosing the first few
normal modes of the structure, and the wing motion at flutter is then
described in terms of these chosen modes. This approach of employing
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prescribed modes 1s often adapted to"the Rayleigh type analysis of
vibration and may be referred to as Rayleigh type ahalysis. In
specific calculatliong with this method the amount—of—work required is
proportional to the mumber of normal modes Involved. In particular, the
order of the flutter determinant that must be solved depends directly
upon the number of modes involved. For simple wings, wilthout concen-
trated masses, the Raylelgh type analysis usually ylelds satisfactory
resulte with not more than two or three normel modes. However, if the
wing carries concentrated masses, such ag englns, fuel tank, or landing-
gear instellations, so many normal modes may be required to obtain satlis-
factory results that the Rayleilgh method may not be the most—feasible
method.

In cases where many degrees of Ffreedom are involved the most logicel
. procedure would be to treat the system of dlfferential equatlions of
motion of the wing rather than to choose specific modes. This method 1s
in general very difficult and tedious to carry through, although it has
the advantaege that the order of the flutter determinant that must be
solved depende only upon the order of the system of differential equations
end not upon the number of modes of vibration -involved.

As early as 1929 Kilssner (referqnce 1) used the differential
equation approach to formulate the problem in the form of an integro-
differential equation for a wing of generel plan form. Xiissner set up
gome particular examples and suggested a method of solutlon by a process
of iteration. This method was not followed up wntil during the war
when some related work was umdertaken in Germeny but not finished.
Wielendt (reference 2) has recently made contributions to the treatment
of nonself-adjoint differential equations by ilterative processes. In
the light of these contributions perhaps the problem of flutter analysis
as proposed by Kiissner warrants further investigatilon.

Recently, Goland (reference 3) applied the differential-equation
method to a uniform centilever wlng and wag able to carry out the
solution of the flutter problem by straightforwerd metheds. In refer-
ence 4 Goland and Luke extended the solution of the problem of the
muiform wing to include a uwniform wing carrying a fuselage at the
semlspan and concentrated welghts at the tips. Goland and Luke made
use of the lLaplace transform to solve the differential equations by
operational methods for both the symmetric and antisymmetric types of
flutber. In both references 3 and 4, the objective was to compare
Tlutbter speeds end certaln flutter parameters for specific umiform
wings calculated by the differential-equaetions method with the same
quantities calculated by the Reyleligh method when only the fundamental
bending and torsion modes were used in the calculations, Fairly close
agreement between resgults calculabed by the two methods were obtained
in both references 3 and 4. No comparigon with experiment, however,
was made in either case. '

The results of a systematic series of flutter tests made to
determine the effect of concentrated weights and concemntrated weight
positions on She flutter speed of & uniform cantilever wing ers reported
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in reference 5. After these experiments were finished, an attempt was made
to compare the results with e theoretical snalysis by the Rayleigh method.
In cases where the mass of the welght was of the same order as that of the
wing and placed so that the distance between its center of gravity and the
elastic axis of the wing was a conslderable fraction of the wing chord,
however, several normal modes would have to be employed and there was no
way of knowing in advance Just what number should be used. Because of
this difficulty and because the wing was a uniform wing, the most extreme
cage was chosen from reference 5 and investigated by the dlfferential-
equations method by followlng an extended procedure of Goland and Luke.
The purpose of this paper is to report the results of this investligation.

The paper consists of the mailn text and two appendixes. In the
maln text the differential-squation method is sebt up for any wmiform
cantlilever wing with an arblitrarily placed concentrated welght and the
solution, based on an extension of the msthod used by Goland and Iuke, is
developed. Applicetion is then made to a particular wing-weight system
used in reference 5, and camparison with experimental results is given.
The mass of the welght (welght labeled 7a in reference 5) was about
92 percent of the mass of the wing and at each spanwise welght position
the weight was placed so that 1ts center of gravity was sbout O.41 chord
forward of the elastlc axlis of the wing. (It mey be mentioned for the
seke of comparison that in the numsrical example treated in reference 4 5
the mass of the welght was only 39 percent of the mass of the wing and
placed O.1l chord behind the elastic axis of the wing.) The geometric
aspsct ratlio of the wing was 6, which was considered large enough to
warrant the use of two-dimensional alr forces wlthoub aspect-ratio
corrections for oscillating insteblliity (not necessarily so for the
divergent type of instability (see reference 6)). Omne other simpli-
Tication was the omission of terms due to structural demping. The
computed results agree remarkably well wlth experimental results,
particularly in regard to trends.

In appendix A the method used by Goland and Luke, which includes
the derivation of the differential equations, for a wing carrying a tip
welght 1s outlined and extended to & wing carryling an arbitrarily placed
welght. A somewhat general but brief discusslon of operationel methods
of solving boundary-valus problems is Included and 1llustrated with a
gimple example for readers who might be interested but are not familiar
wlth the operational. epproache.

In appendlix B the derivetion of the flubter determinant i1s com-~
Pleted and a method of solving the determinant is 1llustrated by a
detailed calculatlon of the flutter speed for the wing and one weight
position of the wing-weight combination discussed in the test. As a
final toplc in thls appendlx the solutlion obtalned for the flubter
determinent is used with the solutions of the differentlal equations to
calculate the amplitudes and phase angles of the deflection curves of
the wing-welght system at flutter speed.

4
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SYMBOLS

(The symbols are given in terms of a consisbtent set of units that
are convenient for the compubtations In this paper. They can be converted
to any desired set of units by proper attention to the dlmensions

involved.)

a

€1

&2

L

nondimensional dlstance of elastlic axis from midchord
measured In half-chords, positive for positlons of
elaestlic axlis behind midchord

wing half-chord, feet

chordwilse distance of-wing center of gravity from
elastlic axis, posltive for center of graviity behind
elastlic axis, feet

chordwise distance of weight center of gravity from
elastlic axis, pogltive for center of gravity behind
elagtlc axis, feet

gravitational constant, feet per second per second

mass mament of inertia of uniform wing per unit—of -
spanwlse length, referred to wing elastic axis,

Pound-second? (MKlé)

mass moment of inertia of weight referred to wing
elastic axis, foot-pound-second

radius of gyration of wing sections about wing elastlc
axis, feet

radius of gyration of weight about elastic axis, feetb
{ w
reduced-frequency parameter i

aerodynamic 1lift force per wmit of spanwise length

Ly + 1Ly' = mpb°Ly

Ly + ilg'

1

41

= npb3[La . Lh<% + a):’

semigpan of wing, feet

location of welght measured from wing root, feet
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Ly, L s My s Mo, serodynamic coefficients as tabuleted in reference T

M

1
My + iMy

Mp + 1My’

< o o

gl

o}

Y(x,t)

y(x)

EL,

aerodynamic moment per unit of spanwlse length taken
about elastic axis

we? i - (G + o]
oty - 1 e e)-mB e +nE e

wolght of wing model, pounds

mags of wing per unit length

welght of concentrated weight, pounds
transverse shear force in wing at station =x
torsional moment in wing at station =x

rob'bs of cubic equation

operator used in Laplace transformation

time coordinate

sum of all symmetric polynomial functions in Ry, Rp, Rj3
which are of degree n

experimental flutter speed for wing without welght,
feot per second

flutter speed, feet per second
reduced flutter speed

spenwise coordinate mesasured from wing root
general mode shape functlon in bending

mode shape function in bendlng after assumption of
harmonic motion (\yl(x) + iya(x))

flexural rigidity of uniform wing, pound.—fee‘be

torsional rigidity of wniform wing, pomd.—fee'b2
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q:im'l' + !
AT Iy + iy

B =%<me1+1'e+ﬂ'e'>
7 =g 2)

8=§§I+M€+1M9'>

K mass ratio <?2n )
o) air density, slugs per cublc foot
A camplex value of determlnant
by value of A vwhen real and imaginary parts are equal
Ofx,t) general mode shape finction Iin torsion
e(x) mode shape function in torsion after assumption of
harmonic motion (92(::) + :7.63(::))
w circular frequency at flutter, radlans per second
kg frequency, cycles per second (-é“iﬁ)
ANATYSTS

. As mentioned in the Introduction the differential equations that
govern the motion of a uniform wing at flutter speed, as derived by
Goland in reference 3, and a method of solving the equations for a
uniform centilever wing cerrying an arbitrarily placed weight; based on
a method developed by Goland and Luke in reference 4, are discussed in
appendix A. This section, therefore, 1s devoted to a brief discussion
of the differential equations of motion of the wing, the boundary condi-
tions, solution of—the bowndary-vaelus problem by means of the Laplace
transform, end the solution of the flutter determinent.

The differentlal equations and boundary conditions that govern
the motion, at flutter speed, of a centilever wing of length 1 with
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a concentrated weight placed 17 units along the span from the root
sectlon and eo units forward of the elastic axis of the wing, as derived
in appendix A, are

717(x) - ay(x) - pe(x) =0 (1)
6''(x) + 7y(x) + 80(x) =0 (2)
(&)  5(0) = 3'(0) =6(0) =0
(b) EL,y''(1) = ELy'''(2) =cge'(1) =0
() ER[y'''(y - 0) - 3 (i ¢ 0‘)] - Z—wmg[y(zl) + e20(1y)]

(a) GJ[G' 1 - o) -6'(1 + o)]=‘;—w 2[623‘(11) + Kp%0 (7»1):)

where

o}
|

%i—;(m-l-ly-l';‘l’y!) _

2
B %E(me1+le+ﬂe'>

i

7=‘§-§(m51“‘y+”‘y'>

8=g—i<I+Me+iMe>

and wherse y(x) is the displacement of a chordwise element of the elastic
axis of the wing at span position x 'due to bending; 6(x) is the corre-
sponding displacement due to torsion; primes assoclated with y and 6
indicate differentlation with respect to xj EIp 1s the flexursl rigidity

of the wing; GJ 1s the torsional rigldlty of the wing; _gw is mass of the

welght; m 1is mass per unit length of wing; and o 1is the circuler
frequency of bending and torsion at flutter. In condition (c) the
mnotetion y'''(i] - 0) indicates that y'''(x) is to have the value that
1t approaches as x —17 from the Inboard side of the weight

and y'''(i1 + 0) indicates that y'''(x) is to have the value that it
approaches as x-—»17 from the outboard slde of the weight. Similar
meanings are given to 6'(11 - 0) and 6'(1y + 0).
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The quentities Ly + il;', Ig + ilg', Mo + IM_', and My + iMp'
can be written in terms of—tabulated quantities as follows:

Iy + 4Ty = neb°Ly,

fo 50"« i - 1} o]
My + 1My ' = “pb3[¥h - Iﬁ(% + a)]
,ﬂ-;-j_Me';«nh’*l—M -L(l_ ) - M. { —+n‘+~(—+n\2]
a a2 &/ mz 2

In reference T the values of Iy, Ly, My, end M, are expressed in terms
of Theodorsen's F and G fumchbions of reference 8 and tabulated for
various values of the reduced speed Vv

The root conditions (a) and the boundary conditions (b), of the
boundery-value problem, are the usual conditlions that must be imposed
upon the equations of a vibrating cantilever beam (or wing). Condi-
tions (c) and (d) stipulate discontinuities of determineble magnitudes
in trensverse shearing force and torque, respectively.

Applying the Laplace transform (see appendix A)

o0

j; e~ 8Xr(x) dx = f(s)

to equations (1) and (2) end meking use of conditions (a), (c), and (d)
glves '

%7 (s) - s¥o - Y3 + e‘szl[k"'(ll -0) -yt (e + 0{] - oj(s) - G(s) =

(3)
and
§28(s) - 01 + 0 U6 (21 - 0) - 0'(zp + 0)] + 88(s) + 7F(s) =0 (1)
where -
Y, = y''(0)
Y3 =y'""(0)
8, = 8'(0)
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and
2n+l ® Tnx2nll-
o(x) = elZ(an+1)'_72§ (%+4)'-73Z(2n+5)'
7205 [ ' 2 mp(x - 1)
T _n+ ot 0'(1 - 0) - e'(z1 +0) OL}__ (2n + 5) 1
=0 . n=0

) Tn<x _ Z:L)2n+l—
2

(en + 1)!

o - 2n+5
7[:?:”@1 _ (D _ ytn<zl + C» Tn(x 7:1__‘) n: (12

(2n + 5) 1!

where in both equation (11) end equation (12) the terms involving (x - Zl)
are to be considered as zero when x = 1j.

Equations (11) and (12) are genersl expressions for the amplitudes
or displacements of a point x of the elastic exis of a uniform wing
vibrating In bending and torsion under the condlitions of flutter with an
arbitrarily placed concentrated weight. When the weight is concentrated
at the wing tip the equations correspond to those obtalned by Goland
except for a difference In root conditions. When the welght is con-
centrated at the root (or if the mass of the weight is reduced to zero)
the equations reduce to those for a umlform cantllever wing. These
equations may appear rather formidable in their present form; however,
only the first few terms of each summation seem necessaxry for most cases.

In the derivation of the flutber determinant in appendix B it is
shown thet slnce terms Involving (x - 11) drop out of both equation (11)
and equation (12) at x = 17, the values of y(1;) end 6(i;) cen be
obtained fram the terms not involving (x - Z]). Then, by making use of
conditions (c) and (d) egein, linear expression in Yp, Y3, and 6 cen
'bp substituted for the bracketed expressioms

[y"'.(ll -0) -y (1 + 03]
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For n2 3,
Tp = -8Th.y + afpp + (ab = BY)Tp_3 (8)
When the series e ion of 1/g(s), ua'bion (g) is substitubted
into equations (5) and the transforms y 8) and (8) became sums of
infinite series with terms of two distinct types; that is, terme of types
A
g
and
Be °%0
g

where m 1is a poslitive Integer.

The inverse Laplace transform of Bim (see pair no. 3, p. 295, of

reference 9) for x>0 1is

-{sm m_i. (9)

Be
g

and the inverse Laplace transform of (see pair no. 63, p. 298,

of reference 9) for x >X, 20 1is

1 lBe™®%|  B(x - xo)™?
Ll.esm}= @ - 1)7 (10)
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When the expression for 1/q(s) fram equation (7) is substibuted into
equations (5) and (6) end the inverse trensforms is applied, the following
geries expressions of y(x) end 6(x) can be obtained:

2n+2 o 2n+h ents5

' co
= Thx Thx by Thx
n=0 n: n=0"

= Tnxen'+3 + 6-p = x2n+5
Gt | ) T
n:

-]

1 1 " Tn(x - zl)2n+5
ot vt e

e _ 2n+5
'[7”'(11 -0) -yt ¢ 0)} {5 ZTHE; +z:5L;z

n=0
. o ea o _ .
+ZTn(x 1) (11)
= (en + 3) ¢
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and.

[~
© T, x&nﬂ_ o0 Tnx2n+h < Tnx2n+5

) = . - 7Y, —_— T a1
o(x) = 83 (on + 1)! 2 (2n + 4)! "3, (2n +'5)1
=0 n=0 n=0

0o o > 2ni5
7_£20*5 | ' ZTn(x - 13)
Al e e . [ A ey

- i Tylx - 2 )™

> Tn(x_- Ilfn+5 (12)

s - -y - 9| 3 M

where in both equation (11) and equation (12) the texrms involving (x - 11>
are to be considered as zero when x = 11.

Equations (11) and (12) are general expressions for the amplitudes
or dlsplacement of a poilnt x of the elastic axis of a uniform wing
vibrating in bending and torsion under the conditlons of flutter with an
arbltrarily pleced concentrated weight. When the weight—1ls concentrated
at the wing tlp the egquations correspond to those obtained by Goland
except for a difference In root conditions. When the weight is con-
centrated at the root (or if the mass of the weight is reduced to zero)
the equatlons reduce to those for a wniform cantilever wing. These
equations mey appear rather formideble in thelr present formj; however,
only the first few terms of each summation seem necessary for most cases.

In the derivation of—the flutber debterminent in appendix B it i1s
shown that since terms involving (x - 1) drop out of both equation (11)
and equation (12) at x = 13, the values of y(1,) end 6(1y) cen be
obtained from the terms not involving (x - 7,1). Then, by making use of
conditions (c) and (d) again, linear expression in Yp, Y3, and 6; can
be substituted for the bracketed expressions

(7= 0) -5 (e o)
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and -

1 _ _at
[ - ) - o'(5. 0]
After the substitutions are made, equations (11) and (12) will contein
only the three undetermined coefficlents Yo, Y3, and 67 for sny

particular wing-welght system of the type under consideration. Observe
that conditions (b) have not yot been used. If these conditions are
now imposed upon the equations, there 1s obtained a system of three
linear homogeneous equations in Yp, Y3, and 63 that may be written
for reference as

AyYp + ByY¥3 + €467 = O (13)

where 1 =1, 2, and 3.

The conditlon that a system of equations such as equations (13) have
solutions other than the trivial solutlon

Yo =Y3 =61 =0

is that the determinant of the coefficlents Aj, Bi, and Ci <vanish

(reference 10). This corresponds to the border-line condition between
damped (steble) and undemped (umstable) oscillations or to the point at
which flutter occurs. It will be noted that the order of this determi-
nant depends only on the order of the system of differential equations.

The actual coefficlents corresponding to Ay, By, and C; ave

camplex functions of the frequency , the reduced flutter speed v/tw,
and certain determinable characterlstics of the wing-weight system. The
true flutter speed 1s easily calculated when corresponding values of
and v/bw are known. These quantitles may therefore be comsidered as
(the only) varlgble psremeters in the determinant of coefficients and
the problem of finding the true flutter speed 1s reduced to that of
finding corresponding valuss of these parsmeters that causs the detormil-
nant, hereinafter called the flutter determinent, to vanish. If v 1is
set equal Lo zero the alr forces drop out and the resulting determinant
glves the coupled modes of vibration of the wing in still air. Om the
other hand,if o is set equal to zero the nonoscillatory or dilvergence
condition is obtalned.

Several ways of solving the flutter determinant are mentioned in
reference 6. Although more informative methods exist, a graphical method
was adopted for the present work. TFor example, a valus 1s assigned to
one parameter, preferebly v/hn; the flutter determinsmt is then evaluated
for this value of v/bw =and seversl values of the other parameter w.

The values of the flutter determinent obtainsed in this memmer are complex
numbers and if the real and imaginary parts of a sufficient number of
determinant values are seperately plotted sgainst w, tro point or points
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where the real and imeginary parts are equal are obtained. TIf this
process for other values of v/bm i1s repeated, a locus of determinant
values with equal real and imaginary parts can be plotted against _
both v/bw and . When enough points are determined these plots give
the values of v/bw and o +that cause the determinant to vanish.

An illustration of. the process of solving the flutter determinant
as described in the preceding paresgraph 1s given in eppendix B which
contains the complete solution of the determinant for one weight position
qf the particular wing-welght system described in the section entitled
Application to a Specific Wing-Weight System. In general, when solving
the Tlutter determinant by the preceding method, 1f the assumed values
of v/bw and w are in the neighborhood of their true valuss, only a few
points need be computed to obtain a solution. In the absence of experimental
values of these parameters and in view of the work involved in determining
other peremeters that depend on v/bw, it will be found advisable to use
simplified msthods to obtain approximate values with which to start the
solution.

APPLTCATION TO A SPECIFIC WING-WEIGHT SYSTEM

Attentlon 1s now turned to the application of the boundary-value
problem discussed in the foregolng sectlon to a apecific problem. The
wing-welght system that hes been analyzed consists of a particular
uniforn cantlilever wing and weight combination described in reference 5.
The weight was considered as concentrated at dilfferent specified span
positions but always at about 0.41 chord forward of the elastic axis
of the wing. This welght was selected because of 1ts high mass compared
to that of the wing and because of the large eccentricity due to the
distance between 1ts center of gravity and the elastic axis of the wing.
Furthermors, by vaing only the fundsmental. modes, first bending asnd firet
torsion, the Rayleigh type smalysis had falled to glve any reasonable
results for thls particuler wing-welght combinetion. Pertinent data,
based on measured characteristics of the wing as teken from reference 5,
with the umits in- feet and powmds are :

Chorafeet.,..._............._..,_.__..._.. 2/3
'Lengthfee'b-.. o 8 6 8 ® ® 8 e ® ®» ® 8 ® v v s s e ® ll-
Aspect ratio (gecmetric) s o ® o s s s o & s s e s s e s e 6
Taper ratio e o o s o 8 s 8 % s 8 e e s s e 5 8 s e e s s s e 1
AITFoll BOCHION o o o s o o o @ o 6 « o o o o« o o o o o « o« NACA 16-010
Wpomds..-euo.....o.....-.......... 3-]"'8
I pound-second © s 8 0 0 s * s s e 2 s 8 s e s B F s e s 0 & 0 .00080
EIb,pound—:E‘eet‘......-................. 977.08
GJ, PoUnd-Foet® « « ¢ o o o o s 0 s 0 s e s e s R T 480.56
1/k (stendard eir, noweight)................. 32.6
el,feetoo-o-o-ooooooo--noo.o.o.a-- 0-013
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and, based on measured characteristics of the weight, are

Ww, Pound_s e 8 8 © e 8 e ® ® e ® @ & © 8 8 e @ e & s 8 ® u e » 3 -182
62 3 feet ® @ & & s *+ + e 6 e * a 8 & & ° & ° s = & & e s v » -0 .2728
TWT’ fOO't-pOUIld.-Second. s & ® e & @ . . ¢ ® e e @ e o @ . . - . 0 0013625

Calculation of the flutter parameters have been made for the wing
without the weight and for the wing with the welght at seven different

positions. The calculated results are compared with experimsntal results
in figure 1 and in the following table:
Calculated Experimental

7'l (6-2[:) b v il v
(12.) f (cps) v/ (£ps) (cps) v/ (fps)
0 | -=--- 25.27 6.29 333 22.1 | T.22 334
11 -0.2728 19.23 8.23 331 174 8.88 324
17 -.2728 28 .04 6.93 ko1 806.8 6.81 382
30 -.2728 30.68 8.18 526 (v) (b) (b)
L5 - 2728 25.67 745 401 (p) (b) (b)
L6 - 2728 24.87 7.06 368 21.8 8.06 368
48 - 2728 23.60 6.07 300 21.4 7.1k 320

8It is found in reference 5 that good flutter records for this wing-welght
system were obtalned for several spanwlse welght positions between the
root section and a point 17 inches from the root sectionj but with the
welight at 17 inches from the root sectlon the wing appsared to diverge.
However, the oscillograph records for this case showed two posslble flutter
points, one correspanding to a frequency of 16.3 cps and another corre-
sponding to a frequency of 26.8 cps (only the firet of these is recorded
in reference 5). When the welght was moved farther outward from this
point, definite divergence was noted until the welght was at a point
46 inches from the root section. At this polnt and from this point to
the tip good flutter records were obtalned.

bDive:r‘genc:e .

It will be noted in the table that all the calculated flutter
speeds are within 7 percent of the experimentael valuss and the calculated
frequencles and reduced speeds are within 15 percent of the experimental
values. The calculated flutter speeds are generally slightly higher than
the experimental values for 17 < 17 eand slightly lower for 17 46.

There is no such consistent trend in the other paremsters.

In figure 1 the ratio of both calculated and experimental flutter
speeds for the wing with a weight to the flubtter speed of the wing with-
out a welght are plotted against span position of the weight. The
important thing to note i1n examining flgure 1 1s that the shepe of the
theoreticel curve follows the shape of the experimental curve very
closely in the reglons where experimentel flutter was obtained. The
horizontal dashed line in figure 1 represents the divergence speed for
the wing as camputed by the method of reference 11. Although the
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correct divergence speed for different weight positions would probably
vary, belng somewhat lower with the weight at the tip than at the root,
owing to the effect of the presence of the welght on asrodynamic forces,
the agreement of the approximate value with experimental values is
satlsfactory.

General expressions for the deflection curves are derived in
appendix B from which amplitudes and phase angles for curves of deflectlon,
glope, moment, and shear in bending and amplitudes and phase angles for
curves of anguler deflectlion and torque In torslion can be computed. The
phase angles and amplitudes for the deflection and shear curves in bending
(fig. 2) end the phase angles and amplitudes for the angular displacement
and torque in torsion (fig. 3) have been computed with reference to a
unit tip deflection for the weight position 13 = 17 inches. In figure k
the amplitudes in deflection and shear in bending from figure 2 arve
compared with the deflection and sheer curves due to the fundemental
uncoupled bending mode of the wing,and In figure 5 the amplitudes in
angular deflectlon and torque In torsion from figure 3 are compared with
the angular deflectlon and torque curves due to the fundemental uncoupled
mode in torsion. There is a nobable dilfference in the shape of the
amplitude curves computed by the present method and those camputed from
the first normal modes. This discrepancy indicates that several modes *
would have to be employed to obitain satisfactory results by the Rayleigh

type anslysis.
CONCILUDING REMARKS

The method discussed in this paper is not limited to a uniform
cantilever wing with a single weight. By proper attention to the boundary
condlitions the theory can guite easlly be extended to apply to a umiform
wing carrying any number of arbitrarily placed weights, one of-which
might be considered as a fuselage and made to yleld the so-called
symetric and antisymmstric types of flutter. Furthermore, for conven-
lence of application, theoretical values of two-dimensionel alr forces
have been used. However, since the method does not depend on the
particuler form of air forces Involved, any known or avalilable aero-
dynemic date could be used. In any event, the method ls tedlous and
would, therefore, not be recommended over the Rayleigh type analysils
when it might be known that only the first few normal modes of the
structure are sufficient to give satisfactory results.

For wings that are not uniform the differential equations for
flutter conditions reduce to ordinary differential equations with
variable coefficients. In thils case the solution would, in gensral, be
much more difficult to obtain. For general cases thers would be no
advantage in the operational method of solution although-an iterative
process probably mlght be used to great advanbeges
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In conclusion 1t is pointed out that the location of such masses
ag engines, landing gears, and fuel tanks might be used to advantage in
increasing the flutter speed of & given wing. As shown by the particular
Problem anslyzed herein end by other experlences a definite region exists,
pecullar to a given wing, in which masses added forward of the elastic
axis of the wing tend to increase the flutter speed of the wing.

Langley Aeronautical Taboratory
National Advisofy Committee for Asronautics
lengley Field, Va., November 30, 1948
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APPENDIX A

OUTLINE AND EXTENSION OF METHODS OF FLUTTER ANALYSIS
AS PRESENTED IN REFERENCES 3 AND 4
1. Derivation of the Differential Equations That Govern
the Motion of--a Wing at Flubter Speed
Conslder a spenwlse element of incremental length dx at station x

of a wing osclllating in bending and torsion in a free stream of fluld
(see sketch).

ALTERILRLALLRRNRR RN

Elastic exis

Wind

- C\/ - Station x
direction \ \E

The displacements Y &and & of an element of the elastic axls are
functions of x end t. In order that this element remain in dynsmic
equilibrium the extermal forces and moments on the element must balance
the 1nertisa forces and moments.

The externsl forces and momsents consist of transverse shearing
forces end torslonal moments, which are trensmitted from one element of
the wing to the next, plus the aerodynsmic 1lift force and pitching
mement and internsl or structural damping. Structural. damping 1s not
taken into consideration in this discussion, although its inclusion
would add no computational difficultles.
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The trensverse shearing force acting upward at x 1is

N = -ELy %?i (A1)
end that acting downwerd at (x + dx) is
N+§£ax=-mb%z—§-mb$dx (a2)
Similarily the nose-down torsional moment acting at x 1s
T = a7 2 | (a3)
and at (x + dx) the nose-up torsional moment is
T 28 >0 (ak)

T+§—xdx=GJg'x+GJg'2-dx

The two-dimensional aerodynemic forces ecting on an elemerit dx of an
oscillating airfoil have been derived by Theodorsen (reference 8) and
can be written as a 1ift force and serodynamlc moment acting about the
elastic axis of the wing, respectlvely, as

de=<w2IyY+wa'§%+szee+mLe'%b@-dx (a5)
de=-'-<w yy+%'%+m2bfge+awe'§>ax (46)

The 4inertia Fforce of the elemsent dx cen be written

2
<m % + mey '2:2 (A7)

end. the inertia mcoment as

=
d_© °Y
T = + meq —=ldx (AB)
<at2 T ae?
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Dlagrams of the forces and moments acting on an element of wing of
length dx at statilon x are as follows:

L dx T
N] M dx
T
T g-d::
Pe B2Y
I= + mey

Imposing the conditions of-dynemic equilibrium of the element at x by
equating inertla forces to extermnal forces and Inertie moments to external
mements gives the two differentlal equations that govern the motion of

the wing:

2 -
m§-é+msl-g—£=-EI-b$+a.>2LyY+wLy'%%+aﬁLee+wLe'%%

e (A9)

5 %6 Py a2e ' Y ' gg

ISE rmeLss - +032MyY+aMy =+ oPMge + attp' §F

2. Boundary Condltions for a Uniform Cantlilever Wing Carrying
an Arbitrarily Placed Welght at Flutter Speed

The boundary conditions that must be imposed upon equatlons (A9)
for a uniform cantilever wing are

(1)  x(0,t) =0

(2) EI-DB—x Y{x,t)Lo =0
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(3) e, =0

() EIbEi_z Y(x’tﬂ =0

3
(5) EI-D[-:—:S Y(x,'b‘;' =0

6) GJEj—z e(x,tﬂ _ o

These are the usual conditlons that must be imvposed on & vibrating canti-
lever beam. Condition (1) is the condition that the end at x =0 is
supported (either hinged or built in). Conditions (2) and (3) imply
that this end is fixed or bullt in. Conditions (&), (5), and (6) imply,
respectively, that there is no bending moment, trensverse shearing force,
or ‘torsional moment acting at the tip x = 1.

If there 18 an arbltrarily placed welght on the wing, other condi-
tions must be imposed that will determine the effect of the welight upon
the motion of the wing. If the welght 1s consldered as concentrated at
some point on the chord line at station x = 17, 1t will create discon-
tinulties in both trensverse shear and torsional moment. The magnitude
of these dlscontinulties are known functlomns of the mass of the welght,
the location of the welght, and the acceleration of the wing. The
remalining conditlons required to complete the boundary-value problem for
the general motion of the welghted wing are, therefore,

3 a3
49! EL, E’—- Y(x,ti! -[—.. Y(x,t)J
ox x=(1-0) dx3 x=(17+0)

Ww. N2 ' 2
= E‘.‘T[g_ta_ Y(x,t) + e %—E @(x,ti!

x=17

(8) GJ[% @(x;tﬂk(zro)' ) [563_[ e(x’t):,x=(zl+0)

W, 32 2
== -g‘—' % 35 Y(z,t) + R :2? Q(x:tﬂ

x=17
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For the puz"pose of flutter analysis it is asgsiumed that the motlons
in both bending and torsion are hermonic end that the freguencies in .
bending and torsion are equal. Therefors, only the particular form that
the solution to the boundery-velue problem has when these conditions
obtain need be sought. These conditions imply that Y(x,t) end ©(x,t)
are of the forms .

Y(x,t) = 7 (x)e ¥t (
A10)

e(x,t) = G(x)eim

where, on the right-hand side of equations (A10), y and 6 are now
camplex amplitude functions of-the span coordinate x from which the
shape and phase relation of-the wing at any fixed time during flutter
can be obtained.

If the velues of Y and @ from equations (Al0) are substituted
into both 4ifferential equations (A9) and into the boundary conditions,
the problem 1s greatly simplifled. The differential equatlons become ’
independent of t and appear as ordinary differentlial eguations with
constant coefficlents. After meking the substitubion and rearranging
terms, the equations of motion can be written as

——

EIb%&-(m+Ly+1Ly')w2y-(me1+1.9+iLe')a>26=0

GJ?‘—;Q+(mel +—My+iMy')wey +<I+M9+1M9')a)29 =OJ

or more simply as

]
o

- oy - B6

B %

(812)

o
2 -9y + B0
ax= '
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The boundary conditlons also becoms independent of + and can be written
as follows:

(GR)] y(0) =0
(2") §'(0) =0
(3') e(0) =¢
&Y oy (=0
(" §'''@1) =0
(6" 8'(2) =0

(7" EIbl:Y'”(Zl -0) -y'""" (1 + 0)] = - ig‘-’aﬁ y(11) + 926(21-)]

8" GJE'(ZJ. -0) -6"(11 + 0)] =H§w2[ezy(7-1) + K229(Zl)]

3. Solution of Boundary-Valus Problems in Ordinary Differentlal
Equations by Operetional Methods and Application to a Beam
Carrying an Arbitrarily Placed Welght

The boundary-value problem given by equations (Al12) and conditions (1')

to (8') can be solved by straightforward methods of solving ordinary
differentlal equations with constant coefficlents. The operatlional

method, however, is a much easler and shorter approach, particularly in
view of the dlscontinulties in shear and torgqus.

Briefly, the solution of a bowndary-value problem by operatlanal
mothods consists of applying the Iaplace transform to the differentiasl
equations, the Inltial conditlons (root conditions when applied to beem
problems) » and certain forms of other boundary comditlionsj of solving
the resulting system for the transform of séch dependent varieblej; and
then by epplying the inversion Integral to the results. The remalning
boundary conditlons are then used to set up relations among whatever
mndetermined parameters that might remsin.

In the case of flutter analysls a complete solutlon to the equatlons
i1s not neseded but only the conditions under which an unsteble equilibrium
mey exlst. The relations that canm be set up between the umdstermined
paremeters correspond preclsely to this condition. In other words these
relatlions appear as a system of homogensous equaetions and the satisfaction
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of the condition that thls system of equations have e cammon solution

other than the trivial solutlion corresponds to the border-line condltion
seperating the Gamped and undemped osclllatlions of the wing.

The Laplace trensform of £(x) is

L‘&'(x)} = j; " guex £(x) dx = £(g) (a13)

where 8 mey be real or complex end X > 0. The sufficient conditlons
that thls Infinite integrel exist are that £(x) have no infinite dilscon-
tinuities for x >0 and that f£(x) be of exponential order as X —> @ .
(S8ee reference 9.) In other words finlte dilscontinuities such as those
appearing in the foregolng problem do not invalldate the operational
approach.

The Leplace transform of the nth derivative of a continuous
function with continuous derivatives, for which the function and all its

derivatlves are of exponential order, can be obtalned directly fram
equation (Al3) as

L{fn(x)} = §%8(s) - s2°12(0) - 522 (0) - + o . - £2°1(0) (A1k)

The Iaplace trensform is linesxr 1n the same sense as differentiatiomn
or integration. That 18, if- aj and by are constants

L{a.nfn(x) + an_lfn"l(x) + o0 tagf(x) +bf™x) + ...t boe(z)}

= anL{fn(x)} +-8y.1L fn-l(x)} e e ot aoL{f(x)}
) R R AT (a15)

Thus the Laeplace transform of a linear differentlal equation with constant
coefficients 18 generally a sum of expressions similar to equation (a1k).
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Tn equation (Alk) the quantities £(0), £'(0), « « . , £271(0)
are the boundary conditions at the origln of the dependent varisble
(wing root) that corresponds to constants of Integration. When +these
quantltlies are glven they are put directly into the transformed equation.
When the quantities are not glven they correspond to what has been
called undetermined parameters in the preceding paragraphs and must
later be determined in terms of other boundery conditions.

Finite discontinulties in s function or eny of its derivatives
are teken into accownt by proper attention to the limiting walues that
the functlon or its derivatives have on the two sides of the dlsconti-
nulty. In particular, if a function and its first n derivatives are
of exponentlal order, if the first (n - 2) derivatives are continuous,
if the (n - 1)t derivative has a finite discontinulty at Xy, and if
the nth derivative 1s contlnuous except for a singular point at xg,
(see sketch)

-

¢
2 (x)
£2(x)
and i
£0-1(x) '
P71 &)
,\
X5 —

the Leplace transform of the nth derivatlve has the form
L%n(x)} = g% (s) - s LP(0) -~ + o
- 872 (0) - 6™ Fo[£0 L (zo + 0) - 12 Uxo - 0) | (16)

vhere f(x, + O) is the value of f(x) as x approaches x, from the
right end f(xo - 0) 1s the value of f(x) as x approaches x, from
the left. In other words the terms in the brackets express the magnitude

of the discomtinuity in £2 (x) at x, in the (n - 1) 8% gerivative
at Xae
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An exemination of the boundary-valus problem, equation (A12) s Bhows
that the transform will be glven by a sum of expressions precisely of
the form of equation (Al6).

In order to Interpret the transformed function f(s) in texrms of
the originsl function #£(x), use may be made of the inversion integral
dlscussed in text books on operational calculus; or one may refer
directly to tables of transform.

As a simple example the operational method ls applisd to a cantl-
lever beam carrying an arblirerily placed welght and assumed to be
vibrating in a vacuum in bending only. .

The boundary-valus problem for thls case can be written

L
EIbi—j = mfy (ax7)

(2) y(0)=y'(0) =0 B
(v) ') =3'''(3) = 0 1 (a18)

(c) EI-DE'”(Zl ~0) - y'' (L 0]=-f—f—ey(zl)/

where the symbols have the same meaning as in equation (Al2).

If the root conditions () and the boundary condition (c) are used,
the transformed problem solved for F(s) gives

2
- 8T I3 e y(Zl) -8l
y(s)—sh_ah+sh_ah+gEIbs3+_all-e 1 (a19)

my®
where, for brevity, I, = y''(0), Y3 = y'''(0), and ot = BT,
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The inverse transform of equation (A19) is (see pair nos. 31
and 32, p. 296, and relation 12, p. 294, of reference 9)

y(x) = Q? cosh ax - cos ozx>+ i—(sinh ax - sin a:x>

VP

+ y(11) éinh a(x - 77) - sin afx - Zl):] (A20)

203gET Iy

or

y(x) —% cosh ax - cos ax>+-—3—sinhax- sinocx:)

2¢3
2
W, Y
+ L —22 (cosh aly - cos all>
a,3gEI-b 2a

2m3 sinh «ly - sin azjj \:mh alx - 17)

- sin a(x - Zl{l - . (a21)

where the last bracket 1s zero whem x - 11 < O.

Tmposing bowndary conditions (b) gives two homogemeous equations
in Yo and Y3« Each velus of « that will cause the determinant of
the coefflcients of Yp and Y3 to vanish corresponds to a mode of
vibration.

This result has been applied to the wing and welght discussed in
the text of this paper with the welght located 17 Ilnches from the root.
The deflsction and shear curves due to the first wmcoupled modes in
bending only have been computed and are plotted in Ffigure 6. Corre-
sponding results have been computed by a 20-station process of iteration
discussed in reference 12 and plotted In the same figure.
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k. Representation of the Inverse Transform of the Boumdary-
Velus Problem, Equation (A12), by a Power Series

The transform of both y(x) and 6(x) of equation (A12) are of the
form

Py (s) . Py (s)
ats)  aley °

f(s) = ~Xob : (a22)

vhere Py(s) and Po(s) are polyncmlals both of lower degree than q(s).
Neither Pi(s) or Po(s) have common factors with_ q(s) where q(s) is
of the sgpecific form

afs) = 6 + agt + b2 + ¢ = (52 - Rl)(se - 1@)(52 - R3) (A23)

vhere the coefficients a, b, and ¢ and the roote squared Ry, Ry,
and R3 are complex. The Inverse functlion mssoclated wilth such a
transform gives f£(x) in terms of circular and hyperbolic fumctions

of xJRi, but with the results in this form the process of solving the
flutter determinant becomes very cumbersome.

By meking use of the propertlies of symmetric fimctions, Goland and
Luke (reference 4) outlined a simple method of obtaining serles expansions
for the transforms of equations (A12) thet does not involve the
meticulous task of finding the roots of q(s). The inversions of these
expansions give y(x) and 6(x) in the form of convergent series.

For the development of these series 1t is filrst necessery to con~
sider q(s) as a cubic in ; namely,

3 3
ok eACD
By making use of the binomial theorem, 1/q(s) can be written as

3 Ry R4S, Ry3
1 1 1 1 1
—-(—qu =z£‘€+§+gﬂ—+¥-+...> (A25)
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Equation (A25) is independent of any interchange of the paramsters Ry, Rp,
and R3 and thus satisfies the description of a symmetric function 1in
these parsmeters. (For a discussion of symmetric fimctions see refer-
ence 10 or any text on higher algebra or theory of equatioms.) If the
indicated multiplicatlion in equation (A25) is carried out, the results

can be written

L _Llf(p ,T1,.7T2 Tn , ...
dr R FoE o E ) -

where the general term T, represents the sum of all possible symmetric
polynamials in R, R, end R3 which are of degree n and with all
coefficients unity. By making use of Newton's identity relative to
symmetric polyncmials, that is

Ty = =aTp.y = PTpo - CTn_3 (A27)

where the value of any Ty, is %o be disrsgardsed when =n - J <O,
every Tn can be written iﬂ torms of the coefficlents a, b, and c¢ of
equation (A23); for exsmple,

To =1 a
Tl--a.
— g2 - L
I, =a - b % (228)

-a.3 + 28b - ¢

w'—:l
|

-/

With the aild of equation (A26) and equations (9) and (10) of the
text the inverse transform of equation (A22) or of y(s) and 6&(s) cean
therefore be written as a sum of terms of the type given iIn equations (9)
.and (10) where the T,'s enter as coefficients in the numerator and are
easlly evaeluated in terms of the coefficients of a known cublc equation.
In the application to flutiter analysis only the first few Tn's are
usually necessary because the resulting series is gemerally found to be
highly convergent.



30 NACA TN No. 1848
APPENDIX B

DERIVATION OF THE FLUTTER DETERMINANT AND SAMPLE CALCULATIONS

Introduction

In this section the flutter determinant is formally derived and
the method described in the text for solving the determinant 1s
11T ustrated with sample calculations for e specific example. Also final
expregsions for the deflection curves are glven from which amplitude and
phasge angle curves of deflectlion, shear, and torque are calculated for
a specific case. The calculated amplitudes are compared with corre-
gponding curves computed from the fundamenteal uncoupled modes In bending
and torsion.

Derivation of the Flutter Determinant

In equations (11) and (12) of the text it 1s flrst necessary to
evaluete the expressions

EY”'(zl -0) - g''(3y + 02‘(
and
E'(zl -0) -8'(11 + oﬂ

in terms of Yp, and 67. Since terms involving (x - 13) drop out
of both equa.‘bion (El) and equation (12) for x = 17, the values of y(17)
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and 9(?, ) ~an be obtained directly from these equations. The values
of y(11 -)L end 6(1;) substituted into conditions (c) end (d) of the text

glve the deslred relations; namely,

ylll(zl - o) - yl”(ll+ o)

- T gE(ll) + 629(11)]

T BT s{YE[a = 927)2'(———5)—1'2]1 T
Tnzlzn"'e T 2720+5
~ 22n+25' +Y3,:(5' °27) E ;_ln+ T@n +5)7
pak

+ 21,2043
) Gl
n=0

2 q 3.2n+l
OB —=3] o
=0
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and
6'(1y - 0) - 6'(11+ 0)=g£—2- ooy (11) + Kaee_(llﬂ

Efe [625 - %7) ZTE;linﬂ

Tn112n+2

+62 32n+25l
n=0

T12n5
+Y3[625-K227)§ 2nn+5

oo I:[.11_17‘12n+3

+ GEZ an + 3;.l
n=0
1 2nt5
* 91[@25 - nga)g %-Sfrerr
:

o0 2n+l
R zTE—nz—lr—m} ()

Substituting equations (Bl) and (B2) into egquations (11) and (12)
glves

y(x) = hi(x)1p + he(x)Yg, + h3(1)91 (B3)

o(x) = g1(0)Tp + ap(x)¥3 + g3(x)61 (B4)
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where

2202 ety P T, 2,20k
h (x) =n_ '(n_+2yT (22 Tt ELg ES -e27) ; (?nl+ 5!

Tnzlamezl T, (x - z])?-n““5 = r(x- zl)2n+3:|
2n+2 ; (en +5)1 ; (2o + 3)7

on+h

- B s - 2) Z B

iy zlEn-IQ] Tn(x - 11)211"'5
(2n + 2)s (2n + 5)!

+92

o g P05 723y P = 3,20
hz(:x:) = S;W Z(Qn + 3) T + BT Ea - 927)n T_?nl-'. 55 T

T len 3 Jz -1 )2n+5 2 (x - 1,)2m3
2n+3 ; ‘(2n + 5) 4 ; (en + 3)!
2n+5
- GJg [:625 - KegﬂZm

2n+3 - an+5
+ 922 211 o + 3)7 :| ZTngzxn +z]5))3

33
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h3(x) = BZfan:x ;ﬁ (B - epa) gm
Ry it N e
waaﬁ [925 - XpPa) Z%
SR -=1)8 T"((;‘n'f;ﬁn+5

() =72 T mr ‘5 GJg (o8 - T 70T
n

S B <ﬁ v
EI-bgl: oo7) Z % %}Z (:n’+7'5)2|n+5
ep(x) = - 7;; (:gxin;! * z}f]zeeﬁ - @27)2%
5 2 e DR

|:EJI].7':].2:'.1-'-5 Tnz_']_2n+3 'J-'-n X - an+5
EIbg 927)ZZ +55' =0(2n+3) Z (Gn + 5) 1
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and

T Tpxentl = Thxen+5 l: 2 Tniy’
83(x)=é;01§;+—m'“n Gn + 57 %B'Kea)gm

+ 322% Inly Batd l: Tnlx - Zlfm-s _ i Tn(x - Zl)enﬂ':l
+ 1

(2n + 5) . L (en + 1) 7

WPy Ty 37205
EIg[(B - %“)Z(Sms)

29’ 2n+l - 1. )2nt5
) };.LTT%F-_ITT] iTn((:n + g'

By imposing conditions (b) of the text
' (1) =3'"""(2) =0'(2) =0

upon equations (B3) and (BL), three equations are obtailned (writben in the
toxt as equa'bion (13)):

AjYp + ByY¥3 + C30; =

where 1 =1, 2, and 3 and

A1 =hy'Y(7) By =hy''(2) Cy = b3''(2)
Ae_hlln(l) 32=h2|x|(1) 02=h3'”(7,)
Ay = g1'(2) B3y = g '(1) Cs = 83'(2)
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Imposing the condlition that the equations (13) have a solution
other than the triviel solution Yp = Y3 = 81 = O results in the flutter

determinant o

A Cc | =0 (B5)

1
S
N

Sample Calculation of. Flutter Speed
and Deflection Curves

A method of solving the flutter determinant given in the text l1s
J1lustrated here by the solution of the determlnant for the wing-weight
comblination discussed in the text when the spanwlse location of the

wolght is 17 inches from the root. The vaelues of-—TxDva =}—]; that are

chosen are In the nsighborhood of the experimentel value and have
available tabulated velues of Theodorsen's function C(k) = F + iG.

Table I shows the actual computetions required to evaluate the

cosfficients Ay, By, emd Cy for o— = 7.1429 (k = 0.14) and two

values of -2% =f (f =25 cps and f = 28 cps). From columms @, ,
and @ the determinant for f =25 cps is

(1%.9200 - 2.85741) (12.8320 - 2.03151) -(7.3286 - 0.600211)
(11.8000 =~ 3.66951) (10.2970 - 2.85661) -(5.4711 - 0.932331)
(0.17030 - 0.661341i) =-(0.09077 + 0.593k411) -(0.41138 - 0.288641)

A

oxr

A = 1.0326 - 0.69481
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Similarly, for f = 28 cps,

(18.6380 - 3.81151) (15.0860 - 2.63991) -(9.1238 - 0.854331)
A=| (15.5930 - 5.09351)  (13.0080 - 3.79461) -~(7.1158 - 1.39881)
-(0.04177 + 0.870981) -(0.23526 + 0.759481) -(0.51403 - 0.370171i)
or
A = -0.4029 - 0.03121

The determinant was evaluated In this manner for the same wvalue
of v/'ba) and several other valuss of f. The process was then repeated

e
for = = 6.25 and several values of f and for — = 5.00 and several

values of f. The real and imaginary parts of the evaluated determinant
for sach valus of v/"ba) end the corresponding values of f are separately
plotted in figure 7. The ordinstes of the intersections of the dlfferent
pairs of curves of real and imaglinary perits were scaled in figure T and
plotted as Ay against both v/bw and f in figure 8. The zero
ordinates of these curves give the value of v/bw -.;-—D- =6 .93) and the

values of £f(f = 28.0k cps) for which the determinant vanishes. Fram
these values the flubbter speed is readlly calculated to be '

v = (20)(6.93) = (2xve) (6.93) = 2ELEBOM (693 _ 1o7 £ps

As pointed out in appendix A the deflectlon curves at any specified
time are glven by equations (A10)

Y(x,t) = y(x)e¥®t = y(x)(cos wt + 1 sin wt)

e(x,t) = 8(x)e!®t = 9(x)(cos wt + 1 sin wt)_

‘where final forms of y(x) and 6(x) are glven by equations (B3) and (Bl)
and where, at least, the relative values of  the undetermined coeffl-
clents Yp, Y3, and 61 In equatioms (B3) and (B4) must be known. IF
the set of values of v/bw and « thet satisfy the flutter determinant
is used to determine the coefficients A4, By, and C3i 1n equations (13),
there 1s obbtalned a sysbem of three homogensous equations 1n ‘the three
unknowns Yo, Y3 , end 67 ‘that have solutions other then the trivial
solutions Y2 = Y3 = 91 = 0. If these equations are each dlvided

through by any one of the unknowns, say Yo, there 1s obtained a
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consistent system of three equatlions in the two ratios Y1/¥p and 63/Yp.

Any two of the three equations can therefore be solved for these ratios.
Consequently, equations (B3) and (BlY) can be written with ome undetermined
parameter that appears as a factor In each equation. Furthermore, since
the coefficients A4, By, and C3 are complex numbers the ratios Y3 /Yo

and ©1/Y¥o are complex numbers and eguations (B3) and (B4) contain
complex coefficients. The real and imaginary parts of these egquations
can be separated and the equations written

y(x) = YgEfl(x) + iyg(xﬂ
o(x) = Yp[op(x) + 163(x)]

If these relations asre substituted into equations (A10) s

(86)

_ _ —

T(x,t) = Ypiyi(x)oos ot - yo(x)sin wb + 1’}2(3()005 wt + yy(x)sin cni}
i ¢ (B7)

ox,t) = .YE‘EQ(")GC’S ot - 83(x)ein wt + 1E3(x)cos ot + 65(x)sin w{_}
g

or
T e ey o
Y(x,t) = Yo w[yl(xj + Be(xf [cos(wt + @q) + 1 sinfot + cpl):l
_ B _ > (B8)
e(x,t) = YQ\) [92(35) 2 4 [63(in2 E:os(wt + @p) + 1 sin(wt + CPE):L
where -
-1 To(x)
91 = ten™t }i—(ﬁ
and
P = tan™t 'z'g'((z‘}
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and where @ - @p represents the difference in phase angle between
bending motion end torsion motions at x.

The real parts of equations (B8) are interpreted to mean the motions
in bending end torsion teken in a posltive sense. The imaginary parts
can then be Interpreted as representing these seme motions with a phase
shift of =/2 radiems.
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Figure 2.— Plot of amplitude and phase angle of displacement and shear
curve in bending at flutter for 1 = 17 inches (amplitude and shear
referred to unit emplitude at tip In bending).
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Figure 3.— Plot of amplitude and phase angle of torsional dlisplacement

and torque for 17 = 17 inches

at flutter (amplitude and torque

referred to wnit amplitude at tip in bending).
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Figure 4.— Plots of amplitudes in bending displacement and torque and
the corresponding curves computed for the first uncoupled normal mode
In bending for 1; = 17 inches (amplitude and shear referred to unit

amplitude at the tip in bending).



L8 . e : NACA TN No. 1848

2.0 T T T T R | -
Computed by present method
— — — (Computed from first normal modes

_—
1.6 Pl
/
1.2 A
. |
///<Amp11tude
34— —— ==

— ]

-} —'}_‘__
. y
/
4
[/ \
:fP*C:: \\\\\ NACA
/

Amplitude

1
!
. / t N
Torque
/// L—F—~L~~_‘_‘é‘k \
o I ‘-;t>\
10 20 20 40 50

Distance along span, in.
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